@ Software Engineering Technology

Application-Specific Knowledge Bases

Dr. Babak Makkinejad
Electronic Data Systems

It is suggested that companies create and maintain a searchable knowledge base to capture specific issues that are encountered

and resolved during commercial off-the-shelf and custom software development projects. Such a knowledge base could benefit
the current development staff, the future sustainment staff, and the testing staff, hence facilitating further evolution of the sys-

tem during its life cycle.

In this article, I will discuss an activity
related to both commercial off-the-
shelf (COTS) and custom software devel-
opment that I believe is not often
addressed in practice. This activity, often
ignored, is the capture, sustainment, and
viewing of application-specific knowledge
that is generated and acquired by the
development associated staff during the
course of a development project for the
benefit of the sustainment programmers
and staff. T will also discuss enablers for
addressing this shortcoming;

Undocumented, Poorly
Documented, and

Work-Around Features
Before proceeding further, I need to define
what I mean by COTS and custom soft-
ware. By COTS software development, I
mean customization of COTS systems
such as Microsoft Office Suite, Siebel
Systems Customer Relationship Manage-
ment software suite of products, SAP,
TeamCenter Enterprise (aka Metaphase)
from Unigraphics Solutions, and so on. By
custom software development, I mean the
development of a software system from
scratch but admitting the incorporations of
some third-party COTS products such as
(class) libraries, application frameworks,
and so on. I will note here that, as others
have observed, the distinction between
COTS and custom is not rigid; a C lan-
guage compiler and linker may be viewed
as the simplest (lowest) COTS application.
Regardless of the rigor in the definition
of COTS versus custom applications, it has
been my observation that the development
staff encounters and resolves a number of
issues during the course of the develop-
ment phase that are of great value to the
sustainment phase of the system’s life
cycle. The development staff often takes
advantage of undocumented, poorly docu-
mented, or defect work-around features
involving the following:
1. COTS Application
Interfaces (API).
2. COTS Data Model.

Programming

26 CRrossTALK The Journal of Defense Software Engincering

3. Other (third-party) COTS API and

Data Models.

4. Vendot-/Version-Specific Operating

System.

5. Vendot-/Version-Specific Middleware

(class libraries, frameworks, etc.).

6. Network Protocol and Environment.
7. Vendor-/Version-Specific ~ Backend

Database.

This is done to meet the business/tech-
nical requirements of the software system
being constructed. Often, there is no other
way than to use these features to meet the
delivery deadlines of the system. And, con-
trary to a popular belief among develop-
ment managers, COTS application devel-
opment is also subject to the above consid-
erations.

More crucially, the evolution of the
ingredients that have gone into building the
system, from software add-ons to the oper-
ating environment, may cause some or all
of the undocumented features, pootly doc-
umented featutres, or work-around to no
longer pertain to a new release of a partic-
ular building block of the system.
Consequently, the system may undergo sig-
nificant performance degradations or cease
to properly function altogether. The exis-
tence of such a knowledge base will go a
long way to expedite the resolution of such
problems in production.

You must also note that it is most often
the case that the knowledge of these fea-
tures and development shorfeuts becomes
disseminated among the development staff
as a sort of tribal knowledge.
Unfortunately, this tribal knowledge is usu-
ally lost when the system is turned over
from the development staff to the sustain-
ment staff and the development tribe is
reassigned, or dissolved (which is more
likely the case). Thus, further evolution of
the system during its sustainment phase
could be compromised due to the unavail-
ability of this knowledge base of tribal
know how.

The usage of these undocumented,
pootly documented, or defect work-around
features is normally not captured in the

technical design documentation. The tech-
nical design documents are seldom revised
during the course of a typical development
project and often are not detailed enough
to even provide space for capturing this
type of knowledge.

In programming practice, some of this
knowledge could be available in the form
of source file comments. Even then we ate
facing the challenges that the individual
developer may or may not have provided
useful comments, or that the comments
may or may not be relevant to the current
code revision. Additionally, when these fea-
tures are in different technical areas, for
example API as opposed to data model,
they cannot, even in principle, be captured
as part of the code (the code-as-documen-
tation crowd notwithstanding). In fact, in
such cases, often different individuals or
groups are leveraging these undocument-
ed/pootly documented features and thus,
are unaware of one anothet’s work. This
makes capturing this information in a com-
mon technical documentation and format
mote challenging, but at the same time,
more crucial.

Application-Specific

Knowledge Bases

It is suggested that an effort be made to

develop a knowledge base for the system

being built during the development phase
of the system. This knowledge base should
be able to capture the following:

1. Undocumented features used in devel-
oping the system.

2. Pootly documented features used in
developing the system.

3. Defect wotrk-around features used in
developing the system.

4. Version/patch information of the
building blocks of the system.

5. Implemented kludges.

6. Discussion of the technical reasons for
using these features.

7. Things that could go wrong if these
features cease to work in a future
release.

8. Recommendations for replacing these

June 2005

features in future releases.

9. Date and time stamp for all entries in
the knowledge base.

10. Preferred methods for incorporating
features used in developing the system.

11. Standards and guidelines that should be
used to govern system development.

This type of knowledge base must be
distinguished from a frequently asked ques-
tions or a technical design document. It
should be thought of as an undocumented cor-
ner magazine column, a pitfalls list, or a
compilation of programmer’s shorteuts. It can
be thought of as a small analogue of the
large, product knowledge bases that ven-
dors such as IBM, Oracle, Sun, Microsoft
and others supply.

While such large knowledge bases are
for commercial products, the knowledge
bases discussed in this article pertain to
specific applications produced for specific
clients and hence the phrase: application-spe-
cific knowledge bases. And, in an analogous
manner, these application-specific knowl-
edge bases are conceived to be easily acces-
sible and searchable.

An application-specific knowledge
base is thus an enabler for expediting the
resolution of defects and in assessing the
risks involved in the evolution of specific
systems as requirements, building blocks,
and operating environment evolve over
time. Both the technical development staff
and the business staff will be consumers
of this information for technical and busi-
ness purposes.

This type of knowledge base must be
distinguished from a defect tracking/help
desk system. Although some or all of the
issues and knowledge captured in applica-
tion-specific knowledge bases may already
exist in a defect tracking system, they are
not there in a usable format. More infor-
mation on this follows.

Challenges to Adoption

There are two challenges with realizing the
above vision. Perhaps the most significant
barrier to adoption of this practice as part
of the software engineering process is the
development staff buy-in. In many cases,
members of the development staff are
tequited to supply/update documentation
that, in their minds, has no value. In fact,
many development staff members consid-
er much of the documentation effort mis-
placed and non-value-added.

Another major impediment to develop-
er buy-in is the time factor; development
staff is typically under so much time pres-
sure that they cannot find time to create
what they perceive as an additional system
(the knowledge base) beyond the system
they are funded and allocated to create.

June 2005

Additionally, in many instances the devel-
opment staff is not going to be around for
the sustainment phase. It is a leadership
challenge to motivate the development
staff and inspire them to do a great job and
to facilitate the activities of the sustainment
staff.

Perhaps the best way to proceed is to
petiodically ask the development staff to
supply a list of items that they feel will be
important to know for the sustainment
phase in free form. Then as part of the
process of software documentation, one
can compile these inputs into a knowledge
base as part of the key deliverables of the
system.

The other challenge is the packaging
and delivery of this knowledge base. For
the knowledge base to be useful, it must
satisfy the following criteria:

““The technical design
documents are seldom
revised during the course
of a typical development
project and often are not
detailed enough to
even provide space
for capturing this
typbe [undocumented,
poorly documented,
or work-around]
of knowledge.”’

1. Be easily accessible. The user should
be able to get to the knowledge base
without having to navigate a hierarchy
of network folders or Web-based
pages. Nor should he or she have to
look for a specific file among numerous
electronic documents for the informa-
tion that he needs.

2. Be easily searchable. The user should
not have to use Global Regular
Expression Parser or the Search feature
of the operating system to look up the
information for which he is searching.

3. Be easily navigable. The user should
be able to easily and painlessly move
from one item to the next relevant item.

4. Be easily updateable. The knowledge
base should be easily updateable to

Application-Specific Knowledge Bases

reflect the changes to the software, its

building blocks, and its operating envi-

ronment.

5. Be portable. The user should be able
to view the information without having
to be hooked to the enterprise network;
it must be accessible in a disconnected
mode from a portable computing
device. This is an essential feature for
certain class of applications that require
on-site support.

6. Be secure. Unauthorized access to use
the knowledge base for malicious pur-
poses must be prevented.

One approach will be to utilize the
same COTS tools that have been used for
building, updating, and maintaining the
software’s help system to deliver such an
application-specific knowledge base. These
tools are often multi-platform, thus
enabling the development of a knowledge
base that can be made to satisfy all of the
criteria above. These types of systems are
easily searchable, often use hypertext to
provide navigable links, can be edited by
using a word processor, and are portable.
Unfortunately, this is a heavyweight
approach since it requires knowledge of
the specific help system creation tool, and
the effort itself will become part of the
cost of the development.

The next best candidate for the deploy-
ment of such a knowledge base will be to
leverage an existing defect tracking/help
desk system by augmenting it with the
development staff’s issues and resolutions.
With this approach you have the added
challenge of customizing the defect track-
ing system to distinguish among generic
defects and the application-specific gotchas
of the knowledge base. It must keep track
of the requirements, building block revi-
sions, patches, and changes to the operat-
ing environment that pertain to the items
captured in the knowledge base.

Unfortunately, even though most tools
are, in principle, capable of satistying a
number of the above criteria, they do not
satisfy them all. Specifically, in the areas of
navigability and portability, they leave much
to be desired. While the navigability criteri-
on may be addressed with the addition of
Google-like features, the portability will
always be an issue for most of these cen-
tralized systems.

The simplest approach, which is quite
doable and lightweight to develop and
deploy, is to create a hypertext markup
language (HTML) document that will con-
tain the knowledge base. In this approach,
all that is needed is a text editor and staff
who are knowledgeable in HTML; expen-
sive development tools will not be
required. This approach satisfies the first

www.stsc.hillaf.mil 27

Software Engineering Technology

five criteria above.

The three approaches above all require
additional developer interactions that are
specific to the knowledge base. They add to
the development effort and cost. There is
an alternative approach to developing the
knowledge base that leverages a common
activity that occurs during the course of a
development project; that is, team members
send one another e-mails discussing the
problems they need to solve, how to work
around limitations of the tools, etc. In fact,
on the Internet, the archival and current
material in technical discussion forums
serves exactly the same purpose. I am sug-
gesting archiving the e-mail exchanges of
developers for the sustainment phase.

This developer e-mail base, plus the
other documents that are created and
assembled by the development team is, in
effect, a knowledge base that can be a
resource for sustainment staff. To leverage
this naturally created knowledge base, you
need a generic, straightforward method to
capture this source of information at the
end of a development project and make it
available to and easily searchable by the
sustainment team.

This would entail using the built-in
archiving functions of the messaging sever
at project start-up, followed by the search
capabilities of the e-mail client itself such
as Microsoft Outlook on a .pst file. In fact,
there are currently e-mail clients that sup-
port something akin to Google to search e-
mails, for example, Bloomba at
<www.statalabs.com>. In this manner, you
may enable the sustainment staff to quick-

ly find information (or, at least, clues)
about how specific problems were solved
by the development staff.

The sixth criterion, the security
requirement, is a challenge for all
approaches. For those applications that
will have their own security features, access
to the knowledge base may be controlled
by leveraging the application’s own securi-
ty features. In other cases, you must con-
sider the details of secure access to the
knowledge base and assess the risks
involved in unauthorized access to this
data. While 100 percent security is not
even theoretically achievable, a judicious
approach to access control and distribu-
tion lists should largely mitigate the securi-
ty concerns related to the knowledge base.

Conclusion
I believe it a good idea to canvas the devel-
opment staff for issues that pertain to
using undocumented, pootly documented,
defect work-around, kludges, and gotchas
that have been encountered and/or lever-
aged during the course of system construc-
tion for both COTS and custom applica-
tion. I further conceive of the utility of
compiling that input into an application-
specific knowledge base for consumption
by the technical and business staff during
the sustainment phase of the system.
Although there are multiple cost-effec-
tive techniques for packaging and enabling
such a knowledge base based on available
commercial tools, I favor capturing e-mail
exchanges as the most lightweight method.
Since the amount of data in the knowledge

base is necessarily limited to the develop-
ment phase, £¢y word searches will not be
as tedious as on the Internet since the num-
ber of hits would be either small or none
at all.

Finally, I believe that human factor
issues are the greatest barrier to develop-
ing and deploying such a system. I respect-
fully urge the project leadership in the
information technology industry to make
a concerted effort to supply the necessary
positive motivations for this effort to
become practicable. We owe this to those
who come after us to sustain the systems
that we are producing today. 4

About the Author

Babak Makkinejad,
Ph.D., is a consultant
with Electronic Data
Systems. He has worked
in the areas of computa-
tional physics, computer
graphics, image processing, and enter-
prise software development. Makkinejad
has a doctorate in theoretical physics
from the University of Michigan in Ann
Atbor.

Electronic Data Systems

5555 New King ST

Troy, MI 48098

Phone: (248) 696-231 |

Fax: (248) 696-2590

E-mail: babak.makkinejad@eds.com

MORE ONLINE FROM CROSSTALK

CROSSTALK is pleased to bring you additional articles with full text at <www.hill.af.mil/crosstalk/2005/06/index.html>.

Knowledge Management and Process
Improvement: A Union of Two Disciplines

Federal Aviation Administration

Gregory D. Burke

William H. Howard

Northrop Grumman Mission Systems

tion sharing promotes organizational unity and allows FAA head-
quarters and regional operations to function efficiently.

Connecting Earned Value to the Schedule

Walt Lipke
Tinker Air Force Base

The experience at the Federal Aviation Administration (FAA)
shows that process improvement and knowledge management
complement each other well. Process improvement helps the
organization increase its effectiveness through continuous exam-
ination with a view to doing things better. Once processes are
documented, roles and responsibilities are readily identified and
associated activities are performed. Legacy processes are modified
to reflect organizational changes. Knowledge management facili-
tates communication among organizations, increasing informa-
tion sharing and udilizing process documentation. This informa-

For project cost, analysts can predict the final value with some
confidence using the Independent Estimate at Completion
(IEAC) formulas from Earned Value Management (EVM).
However, EVM does not provide IEAC-like formulas by which
to predict the final duration of a project; many express the opin-
ion that schedule information derived from EVM is of little
value. This article discusses the problem and develops a method-
ology for calculating the predicted project duration using EVM
data. The methodology uses the concept of Earned Schedule and
introduces an additional measure required for the calculation.

28 CRrossTALK The Journal of Defense Software Engincering

June 2005

